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This note is devoted to prove that the functions in the third level of Grzegorczyk hier-

archy, indicated as E2, can be computed by a one-tape Turing Machine using linear space.

1. The third level of Grzegorczyk hierarchy E2

There is a intuitive understanding suggested by Grzegorczyk [1]. We first define projec-

tion function Ini (x1, x2, ..., xn) by Ini (x1, x2, ..., xn) = xi.

Now we define bounded recursion. A function f ∈ Fm+1 is said to be defined by bounded

recursion via functions g ∈ Fm, h ∈ Fm+2, and k ∈ Fm+1 if, for any x ∈ Nm and y ∈ N,

(1) f is defined by primitive recursion via g and h:

• f(x, 0) = g(x),

• f(x, y + 1) = h(x, y, f(x, y));

(2) f is bounded from above by k:

• f(x, y) ≤ k(x, y).

Now we define a sequence of computable function:

F0(x, y) = y + 1

F1(x, y) = x+ y

F2(x, y) = (x+ 1) · (y + 1)

For n ≥ 2 :Fn+1(0, y) = Fn(x+ 1, y + 1)

Fn+1(x+ 1, y) = Fn+1(x, Fn(x, y))

We define Grzegorczyk classes En be the smallest class satisfies:

(1) Including Ini (x1, x2, ..., xn), x+ 1, Fn(x, y) as initial functions
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(2) Closed under bounded recursion and substitution.

So we can conclude that the Grzegorczyk class E2 is the smallest class of functions

contains x+1, x ·y, Ini (x1, x2, ..., xn) as initial functions and closed under bounded recursion

and substitution.

2. Explaination of Minsky Machine

The Minsky machine is a multi-tape nonerasing Turing machine with a finite number

of one-sided infinite to the right tapes whose terminal cells contain the symbol 1 and the

other cells, 0. each tape is equipped by one reading head; at each step, the heads can,

independently of each other, move by one cell to the left, to the right, or stay.

We say that a Minsky machine M which has at least n tapes computes an everywhere

defined function f(x1, . . . , xn) if for any x1, . . . , xn the following conditions are fulfilled. If

at the initial time the first n heads of the machine are at the cells numbered x1, . . . , xn

(the terminal cells are numbered 0), while the other heads are at the terminal cells, then

at the final time (when the machine M goes to the final state) the first head is at the cell

numbered f(x1, . . . , xn).

The computation time (the number of steps) is denoted by TM(x1, . . . , xn).

Let a machine M have s states 0, 1, . . . , s− 1. We assume that 1 is the initial state, 0 is

the final state. A programme of a k-tape Minsky machine M consists of commands of the

form

e1 . . . ekq → d1 . . . dkq
′,

where e1, . . . , ek ∈ {0, 1}, q, q′ ∈ {0, 1, . . . , s−1}, q ̸= 0, d1, . . . , dk ∈ {−1, 0, 1} and di ̸= −1

if ei = 1. What this command means is that if the machine M is in the state q at time t

and the vector read by the heads is (e1, . . . , ek), then at time t+ 1 the machine M goes to

the state q′ and the head i, 1 ≤ i ≤ k, moves by one cell to the left (di = −1), or to the

right (di = 1), or stays put at the same cell before (di = 0).

By the configuration of a k-tape Minsky machine M at time t is meant the vector

(x1, . . . , xk; q), where xi is the number of the cell where the ith head is put, 1 ≤ i ≤ k, and

q is the state of the machine M at time t.
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3. E2 = linear space

This result is one of the most important result in the presentation. To prove this we

need to add some settings.

Theorem 3.1. [3] The class E2 is the set of all functions computable by Minsky machines

in a polynomial time.

The proof of the theorem can be found in the cited paper.

Now we are going to prove our main theorem:

Theorem 3.2. E2 = Linear space.

To prove the theorem, we need to introduce some other settings:

We set

x −̇ y = max (0, x− y)

And we define a function [x/y] = the integer part of the number x/y if y > 0, and equal

to zero if y = 0; Similarly, we define a function [log2(x)] equal to the integer part of log2(x)

if log2(x) > 0, and 0 if log2(x) = 0.

We also set

rm(x, y) = x −̇ y · [x/y]

These functions can be easily shown in E2.

Definition 3.1. Let an everywhere defined function f(x1, ..., xn) be computable by a Turing

machine T. For fixed x1, ..., xn, the zone of computation of the value f(x1, ..., xn) is the

minimal connected part of the tape which contains the initial binary representation of the

tuple x1, ..., xn and all cells which the machine T visits during the computation of the value

f(x1, ..., xn) Let S(l) be a function of a positive integer argument l with positive integer

values. We say that a function f(x1, ..., xn) is computable within the limits of the zone (or

within the zone) S(l) if for any tuple x1, ..., xn with binary representation of length l the
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zone of computing of the value f(x1...xn) does not exceed S(l), and we say a space is linear

if S(l) = al + b, with a, b ∈ N.

Now we will prove the main theorem:

Theorem 3.3. [2] E2 = Linear Space

Proof. To demonstrate that E2 is a subset of a Linear space, it’s essential to show the

conversion of a Minsky Machine to a one-tape Turing Machine. For a set of numbers

y1, . . . , yk read by the Minsky machine’s heads, we map them onto the Turing Machine’s

tape. The transformation of the set y1, . . . , yk to its immediate successor y′0, . . . , y
′
n by the

Minsky Machine’s transition function is straightforward.

Now, to prove E2 ⊃ Linear space, we consider the conversion of a Turing machine, using

linear space, into a Minsky Machine. Suppose at time t, the Turing machine’s head is at

cell s. Define Ls as the shortest word to the left of cell s containing all symbols 0 and 1

(if there are no such symbols, Ls is f by definition). Similarly, Rs is the word to the right

of cell s, including it, containing all symbols 0 and 1. These words Ls and Rs are then

converted into the corresponding numbers ls and rs in ternary notation.

If the Minsky machine’s two tapes contain the numbers ls and rs, and the Turing machine

moves to cell s+1 while writing symbol b in cell s, then the Minsky machine transforms ls

into 3ls + b and rs into [s/3].

If the Turing machine’s head moves left, the transformations are ls−1 = [ls/3] and rs−1 =

rm(ls, 3) + 3(rs − rm(rs, 3) + b).

Initially, if the Turing machine’s head is at cell s, next to the rightmost digit of xn’s

binary representation, then rs = 0. To compute ls, convert the binary representations of

x1, . . . , xn into ternary (replacing 0 with 1, and 1 with 2), and form the number with ternary

representation d(x1)0d(x2)0 . . . 0d(xn). This is easily achievable with a Minsky machine.

Finally, we consider the transformation of the Minsky machine’s initial configuration into

the pair of numbers coding the initial configuration of the Turing machine. The procedure

involves computing binary digits of xn and constructing the number whose ternary repre-

sentation is d(xn), considering the contribution of each binary digit to d(xn). This is done
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iteratively for each xi, culminating in the representation of the initial state of the Turing

machine.

In conclusion, the numbers like 2i, 3i used in this process are within a polynomial range

of the variables x1, . . . , xn.

□
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